Extensions 1→N→G→Q→1 with N=C32 and Q=C3xC6

Direct product G=NxQ with N=C32 and Q=C3xC6
dρLabelID
C33xC6162C3^3xC6162,55

Semidirect products G=N:Q with N=C32 and Q=C3xC6
extensionφ:Q→Aut NdρLabelID
C32:(C3xC6) = C3xC32:C6φ: C3xC6/C3C6 ⊆ Aut C32186C3^2:(C3xC6)162,34
C32:2(C3xC6) = C6xHe3φ: C3xC6/C6C3 ⊆ Aut C3254C3^2:2(C3xC6)162,48
C32:3(C3xC6) = S3xC33φ: C3xC6/C32C2 ⊆ Aut C3254C3^2:3(C3xC6)162,51
C32:4(C3xC6) = C32xC3:S3φ: C3xC6/C32C2 ⊆ Aut C3218C3^2:4(C3xC6)162,52

Non-split extensions G=N.Q with N=C32 and Q=C3xC6
extensionφ:Q→Aut NdρLabelID
C32.1(C3xC6) = C2xC3wrC3φ: C3xC6/C6C3 ⊆ Aut C32183C3^2.1(C3xC6)162,28
C32.2(C3xC6) = C2xHe3.C3φ: C3xC6/C6C3 ⊆ Aut C32543C3^2.2(C3xC6)162,29
C32.3(C3xC6) = C2xHe3:C3φ: C3xC6/C6C3 ⊆ Aut C32543C3^2.3(C3xC6)162,30
C32.4(C3xC6) = C2xC3.He3φ: C3xC6/C6C3 ⊆ Aut C32543C3^2.4(C3xC6)162,31
C32.5(C3xC6) = C2xC9oHe3φ: C3xC6/C6C3 ⊆ Aut C32543C3^2.5(C3xC6)162,50
C32.6(C3xC6) = S3xC3xC9φ: C3xC6/C32C2 ⊆ Aut C3254C3^2.6(C3xC6)162,33
C32.7(C3xC6) = S3xHe3φ: C3xC6/C32C2 ⊆ Aut C32186C3^2.7(C3xC6)162,35
C32.8(C3xC6) = S3x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C32186C3^2.8(C3xC6)162,37
C32.9(C3xC6) = C2xC32:C9central extension (φ=1)54C3^2.9(C3xC6)162,24
C32.10(C3xC6) = C2xC9:C9central extension (φ=1)162C3^2.10(C3xC6)162,25
C32.11(C3xC6) = C6x3- 1+2central extension (φ=1)54C3^2.11(C3xC6)162,49

׿
x
:
Z
F
o
wr
Q
<